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A microscopic theory applicable to simple classical fluids, particularly in 
the hydrodynamic regime, is presented. A simple isomorphic transformation 
of the space of one-body additive phase-space functions is considered whose 
distinguishing feature is that the total energy density is contained in the 
new space. A projection operator formalism for this subspace has certain 
desirable properties for the study of the hydrodynamic regime. It is shown 
that, for a broad class of approximations, one obtains a prediction for the 
VanHove structure factor S(k, r that has the correct hydrodynamic 
structure and in which the only quantities that are approximated are the 
dissipative transport coefficients; all thermodynamic quantities appearing 
in the expression are rendered exactly. In particular, a weak coupling 
approximation is made on the memory function, and results are compared 
with the analogous theory of Forster and Martin. Agreement is found for 
the dissipative transport coefficients to lowest nontrivial order in the 
coupling. On the other hand, thermodynamic quantities are accurately 
predicted only to second order by Forster and Martin, whereas in the 
present theory they are exact. 
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1. I N T R O D U C T I O N  

In  this  p a p e r  we will inves t iga te  an a p p l i c a t i o n  o f  the  p r o j e c t i o n  o p e r a t o r  

f o r m a l i s m  o f  Z w a n z i g  (z) a n d  M o r i  ~2) to  the  s tudy  o f  the  h y d r o d y n a m i c  
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behavior of simple classical fluids. We are essentially modifying the procedure 
introduced by Forster and Martin ~3~ to study the dynamical behavior of a 
weakly coupled fluid, and further developed for the general system by 
Fors te /~ and by Mazenko/~ 

Forster and Martin (FM hereafter) introduced an approximation 
scheme based On the smallness of the potential at all distances, which allows 
one to make contact with the linearized equations of hydrodynamics, 
starting from microscopic first principles. It was shown by Akcasu and 
Duderstadt ~6~ that the FM kinetic equation can be simply derived in the 
projection operator language. The projection subspace in that case is the 
space $1 of one-body additive functions, spanned by 

]N(pk)) = ~ [exp(ik.q~)] ~(p - p~) (I) 

The FM theory can then be viewed as an approximation to the associated 
memory function that is accurate to second order in the potential. 

We will show that by introducing a new subspace SM, which contains the 
total energy density, this approach can be modified so as to afford an exact 
treatment of the subspace of single hydrodynamic excitations. In so doing, 
we obtain a prediction for the dynamic structure factor S(k, ~o) that has the 
correct hydrodynamic structure and in which the only quantities that are 
approximated are the dissipative transport coefficients; i.e., in contrast to 
FM, all thermodynamic quantities are rendered exactly. Furthermore, the 
predictions for the transport coefficients of the weakly coupled fluid are in 
agreement with those of FM. The ability to confine the approximation to 
the dissipative part of the theory is not restricted to the weak coupling 
approximation; we demonstrate that a broad class of approximations also 
have this property. 

The paper is organized as follows. Section 2 introduces notation and 
briefly reviews the projection operator formalism. The modified subspace of 
phase space functions is introduced in Section 3 and the associated memory 
functions are discussed. In Section 4 we consider a class of approximations 
for the memory function that lead to predictions for the density and momen- 
tum correlation functions that are in exact agreement with linearized hydro- 
dynamics. The weak coupling approximation is considered in Section 5 and 
the results are compared with those of FM. Finally, Section 6 is a summary 
and discussion. 

2. M E M O R Y  O P E R A T O R  F O R M A L I S M  

We consider a system of N identical particles interacting classically via 
a central potential V(r). We let Ft be a point in phase space evolving via 
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Newton's laws. We represent an arbitrary function A(F 0 as a vector IA(t))  
in the space of phase space functions. Canonical ensemble averages over 
initial conditions are then represented as inner products over the Gibbs 
distribution ~(Fo) : 

(A]B)  = f dFo A*(Fo)B(Fo)qb(Fo) (2) 

The complex Laplace-transformed resolvent operator G for the Liouville 
equation satisfies 

(iz + L)G = - 1  (3) 

where L is the (anti-Hermitian) Liouville operator. If P is the projection 
operator onto some subspace S of phase space functions and Q = 1 - P, 
then PGP satisfies (I'z'7) 

(iz + P L P  + M ) P G P  = - P  (4) 

where the memory operator is 

M = - P L Q ( i z  + Q L Q ) - I Q L P  (5) 

This description is useful for time-dependent correlation functions of the 
form 

gAB(t) = (A(O) IB(t)) (6) 

because the Laplace transform is given by 

CAB(Z) = dt e~tgAs(t) = (A(O)IPGPIB(O)> (7) 

if lA) and I B) are both in S. In particular, the complex density and momentum 
correlation functions are of this form: 

gn,(kz) = is - ~(Pk[ GI pu) (8) 

g~(kz) = if2-1(j~l G[j~) (9) 

where k is along the z axis, f2 is the volume of the system, and 

P~ = E exp(ik.q~) (10) 
C~ 

j~ = Epx~ exp(ik.qa) (11) 
6r 

3. T H E  M O D I F I E D  S U B S P A C E  

For the weakly coupled system the subspace $1 defined in (l) is a useful 
choice because the associated memory function M1 is O(A2), where Z measures 
the strength of the potential at all distances. This means that we can replace 
L in the denominator by L0, the free particle Liouville operator, generating 
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errors only of O(A3). It is also important that Ipk) and ]j) are contained in 
S~, so the theory yields predictions for gn~(kz) and gt(kz). 

One disadvantage of this choice, however, is that the total energy 
density 

[Ek) = trk) + [Vk) (12) 

Tk(Ft) = ~ (p~2/2m)exp(ik.q~) (13) 
(7 

Vk(Ft) = �89 ~ V(q~qe)exp(ik.q~) (14) 
a c B  

is not contained in S~, because I Vk) is not. This is not an insuperable difficulty, 
as demonstrated by FM. However, as we shall see, there are distinct benefits 
to be gained by any theory that has the property that all five densities of 
conserved quantities are contained in S. We will considere here a simple 
modification of the subspace Sz that ensures this property without affecting 
the more useful properties of $1. 

We first choose a new basis in $1. We construct the following set of 
functions of p, which are orthonormal with the Maxwellian weight function 
r 

Rtmn(p) = ytm(O, r (15) 

where the Ytm are normalized spherical harmonics and u 2 = fip2/2rn. The 
rn~ are a set of polynomials that are orthonormal on (0 < r < oe) with the 
weight function p2r Following Gross and Jackson, (8) we use 

2n! 7r a~2 ]1/2 
= I u~L ~+1r (16) 

where L~ are Laguerre-Sonine polynomials. r These functions satisfy 

f o d P  = ~.,., (17) p2r 

which ensures that 

f dp 3~,,,~.~,~,~..~, (18) (o( p ) Rlm,~(p ) Rv m. .,(p ) 

It is useful to point out that the first five R~m. are simply related to the 
functions used by FM, which are associated with the five densities of  con- 
s e r v e d  q u a n t i t i e s .  L e t t i n g  c~ 2 = t i m - 1 ,  

r  = 1 = Rooo 

r = ~p~ = R11o 

r  = ( ~ p ~  - 3 ) / C 6  = Roo2 

C d p )  = ~ p x  = ( R l l o  - R~_1o) /~/2  

r  = ~py = (Rl lo  + R~_~o) / ' /~  

(19a) 

(19b) 
(1%) 

(19d) 

(1%) 
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We now express the p dependence of iN(pk)) in terms of these functions: 

[N(pk)) = ~ [E,m,~(k))r (20) 
gmn 

tE, mn(k)> = f dp R*mn(P)IN(pk)> (21) 

The new subspace SM is obtained by modifying one of the Gmn to 
include the potential energy. We define 

t Doo2(k)) = 1Eo02(k)) - fi~/~ I Vk) (22) 

This has the effect of coupling the kinetic to the potential energy inextricably, 
without changing the dimensionality of the subspace. We then define 

ID,m& = [Ezm~>; (Imn) # (002) (23) 

and consider the functions 

I D(pk)) : ~ &m.(p) lE, m.(k)) (24) 
I ron 

We define the modified subspace SM to be spanned by the set [D(pk)). All 
of the densities of microscopically conserved quantities are contained in 
SM. In particular the total energy density is 

[Ek) = f dp (p2/2m) lD(pk)) (25) 

while the momentum and number densities are 

IJk> = f dp [D(pk))p (26) 

]pk> = f dp I D(pk)) (27) 

The projection operator onto the subspace of SM associated with wave 
vector k is defined by 

Pv(k) = ~ -1  f dp dp' t D(pk))(D(p'k)l W(k; pp') (28) 

where W is the inversion kernel satisfying 

s f dp' W(k; pp')< D(p'k) ] D(p"k)) = 8(p - p") (29) 

This can be solved exactly. We give the resulting expression for W(k; pp') in 
Appendix A. 
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The evolution of the phase space operator PMGP~ is specified completely 
by its matrix elements in the basis I D(pk)): 

SM(kz; pp') = ig2 - z( D(pk)] G I D(p'k)~ (30) 

We can then write the matrix realization of Eq. (5): 

zSM(kz; pp') - f dp" Z~'M(k; pp")SM(kz; p"p') 

- (dp" ~s pp")SM(kz; p"p') = -(1/f2)(D(pk)[D(p'k)) (31) 
3 

where 

= k iL 
[~'M(kzf~C~~ PP"); pp").l "~ (1/ )fdpl (D(p)'fiM~(z)) 

• ]D(plk)) W(k ; p~p")~ (32) 

Note that (31) is not a "generalized kinetic equation" in the sense of a 
closed equation for the evolution of the singlet distribution. I N(pk)3 cannot 
be obtained from I D(pk)) with a z-independent kernel. 

4. HYDRODYNAMIC ANALYSIS; GENERAL FEATURES 

Before we introduce any concrete approximations, it is of interest to 
investigate a number of properties of the theory that are approximation- 
independent; i.e., they are consequences only of the fact that we can find 
SM and W(k; pp') exactly. In the following analysis the function Jtd(kz; pp') 
is to be interpreted as either the exact operator, or the result of some approxi- 
mation to (D(pk)l MMI D(p'k)) in conjunction with the exact W(kz; pp'). We 
include only the class of approximations that satisfy a few rather elementary 
properties, which will be pointed out in the course of the analysis. 

We first introduce a convenient notation for inner products over dp: 
~b~(p) = (p[i) 

(A [B) = f dp ~(p)A*(p)B(p) (33) 

(AtT IB) = f dp dp' (~(p)T(pp')A(~)B(p')~(p') 

The orthonormality of the ~b~(p) then appears as 

(ilj) = 3,j (34) 

but the associated phase space functions 

f dp 6*(P)I D(pk)) (35) I;7 

are neither orthogonal nor normalized. 



Modified One-Body Memory Function for Classical Fluids 91 

The feature that distinguishes the present theory from that of  FM is 
that we now have all five conservation laws in their rigorous form: 

(ildJM(0z)Ip') = 0, i = 1 ..... 5 (36) 

In the FM theory, because only the kinetic energy is contained in $I ,  the 
corresponding equation is, for i = 3, 

(3 j~ l (0z)  lp) = zE(zp) (37) 

where E(zp) is a function associated with the potential energy density. This 
is the source of  most of  the calculational differences between the two theories. 

In the hydrodynamic regime we are principally interested in the motion of  

G u =- (ilSM(kz) lj) (38) 

Using a p-space projection operator  

q = 1 - Z ti)(i] (39) 

we can construct a memory function equation fo r  Gu: 

s - (i~L~u[/) - W~z(kz)]G u = - <i ]j) (40) 

W = W ' +  W" (41) 

W~", = (i I-~'M(kz) lj) (42) 

1 
W~",(kz) = (i[[5~M + ~.#Mlq z _ q(CF M + j /M)q q[Z~M + oA/M]Ij) (43) 

To investigate the hydrodynamic regime, we will expand Wu to second 
order in k [treating z as O(k) or smaller]. All other matrix elements can be 
evaluated exactly. We will then be able to solve (40) and identify t ransport  
coefficients by comparison with the corresponding equation obtained from 
hydrodynamics.  This is essentially the procedure introduced by FM. 

In the remainder of  this section we will assume we are dealing with an 
approximation to (D(pk) I MM[ D(p'k)) that has the following properties: 

W~j = O(k 2) (44a) 

{iIMM[4) = (4JMMri) = 0 (44b) 

( l  - P o ) ]  
(I Px)~(D(pk)] M,vz[ O(p'k)) = 0 (44c) 

/ 

(1 p ~ ) J  

The P's represent reflections of  k, p, and p' through the origin, the Z Y plane, 
and the Z X  plane, respectively. Properties (44b) and (44c) are easily seen 
to be true for the exact memory function. Property (44a) is plausible for the 
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exact theory [cf. Eq. (36)], but it is not easily proved. It will be apparent 
from the subsequent analysis that it is equivalent to the assertion that the 
hydrodynamic description is valid. It can also be shown to be essentially 
equivalent to "property A"  of Forster34) In the following we will demonstrate 
that any theory with property (44a) will predict sound propagation with the 
exact adiabatic sound speed as predicted from fluctuation analysis3 ~) As an 
example, the mode-coupling memory function of Kadanoff and Swift ~14) for 
critical transport coefficients has property (44a). We will present another 
example in Section 5. 

Before writing the explicit form of W,j to second order in k, we introduce 
a lemma relating the two different kinds of inner products. If J is any phase 
space operator, and we define 

(plJ [p') - f dp~ < D(pk) lJ I D(p~k)) W(k; pp') 

then it is not difficult to show (see Appendix A) that 

( D(pk)[J]m> = (pIJli)<i[m>f~ 1 

(45) 

In particular we note that the integral operators d/' M and L'aM are related to 
My and L in this manner. We now define 

(iI~MIj) + W ,  = &j + O(k ~) (47) 

As a consequence of (45) and (47) we find the explicit form for the uncoupled 
transverse Submatrix ( i , j  = 4, 5) 

and longitudinal submatrix ( i , j  = 1, 2, 3) 

0 kL'e~ 2 

Rij = k ~ l  - ikzblzl ik2a 

\ -  ik2ctxl kS32 + ikzb 

0 ) 
k=o<s + ikzblx2 

ikZc 

(48) 

(49) 

The quantities a, b, c, and d are independent of k and z, and we have 
introduced 

/*1 = <514)/(4t4) (50) 

t*2 = (f2/(4[4)) det(f~- ~(ilm)) (51) 

and k ~ j  = (il2'MlJ). This is the form, to O(k2), of any theory based on an 
approximation for (D(pk)[ MMI D(p'k)) that satisfies (45), in conjunction with 
the exact s ; pp') and W(k; pp') 

(46) 
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4.1. F irst -Order  k Calculat ion:  Sound Veloc i ty  

The identification of the eigenvalues of Eq. (50) proceeds by solving 

det{(ilSMlj) - za~,j} = 0 (52) 

An explicit calculation is not necessary, however, because we can use the 
lemma (46) to show that this is equivalent to 

d e t { z ( j [ k )  - ( j l i L I k ) }  = 0 (53) 

which is the secular equation obtained when one diagonalizes the Liouville 
operator in the five-dimensional space of the densities of conserved quantities. 
As shown by Nossal and Zwanzig, (~a~ the five eigenvalues and eigenvectors 
are exactly those associated with nondissipative linearized hydrodynamics. 
In particular, 

z l  = - z 2  = Cok,  z3,4,~ = 0 (54) 

where 

Co 2 = m -  l(aP/c3po)s (55) 

is the adiabatic sound speed, as predicted by equilibrium fluctuation 
analysisJ 9~ That we obtain the exact sound speed is not surprising, since, by 
(44a), our theory is exact to first order in k. In contrast, the FM theory has 
an O ( k )  contribution from the memory function, so that the sound speed 
predicted is only as accurate as the choice of the memory function. 

4.2. Second-Order  k Calculat ion:  Transport  Coef f ic ients  

Now Go satisfies, to second order in k, 

(z~j - &3Gj~ = - ~ -  1<ilk> (56) 

We need a solution correct to second order in k and z that can be compared 
with conventional results obtained from the linearized equations of  hydro- 
dynamics. The O ( k  2) corrections to the eigenvalues (54) can be written 

z l ,2  = +_ Cok  - � 8 9  ~ (57a) 

z3 = - i k 2 D t  (57b) 

z4,a = - (mpo)  - 1~k2 (57c) 

where 

= - m p o d  

Ot  = -  (po~)/~(  414 ) ) C f f  2c - - ~aC 

(58) 

(59) 
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and the, sound attenuation coefficient can be written in the conventional 
form of a longitudinal and a transverse contribution : 

F =  DL + /)t(/xa -1 -- 1) (60) 

Dc = - a  - b(~32 + tx2~2a - ~1~12) (61) 

To make complete the identification with the conventional decomposition of 
F, we would expect 

t~3 = c~./cp (62) 

But in fact this is true, because 

(f~po)- Imfl(414} = mfi(l + p0G~) = m(~po/~P)r (63) 

(in the k ~ 0 limit), so that t~a is the ratio of the isothermal to the adiabatic 
compressibilities. We thus identify 

Dc = ( ~  + ~)(mP0) -1 (64) 

In the conventional hydrodynamic analysis, <~~ one locates the poles 
and writes G~j as a sum of terms each of which is singular at only one pole. 
We shall now do the same thing for Gu and G44, identifying the numerator 
of each term by calculating the residue of the Cramer's  rule solution of (55). 
We find 

Gl~(kz)=g~(kz)=-S(k)((1-~)(z § ik2Dt) -1 

I Cv 1 + i k ~ c ~ [ � 8 9  - D ~ ( l  - c~/Cv)]) 
+ ~ 2 cp z + ~0k -~- =~-p/~ ) (65) §  

G 4 4 ( k z )  = ]~m-lgt(kz) = - p o ( z  -I- [k2~]i-1 (66) 
\ rn po ] 

where S ( k )  is the static structure factor. This is in exact agreement with the 
results obtained from linearized hydrodynamics. (l~ Furthermore, the 
only quantities that are sensitive to the approximation are <7, F, and Dr. All 
thermodynamic quantities are rendered exactly, as long as the approximation 
used is in the class specified by properties (45). In contrast, FM obtain 
expressions that are of the same form as (65) and (66), but the quantities 
Co, cScv ,  and S ( k )  are given by expressions that are correct only to second 
order in the potential. 

5. THE W E A K  C O U P L I N G  A P P R O X I M A T I O N  

5.1. The M e m o r y  Funct ion 

In this section a simple approximation , based on the assumption that 
the potential is small [O(,~)] at all distances, will be investigated. An explicit 
evaluation of the memory function to second order in A will be possible. When 
applied to the space $1, this procedure leads to the FM theory. 
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If we separate L into its free particle and interaction parts, L = Lo + L~, 
the important  property is that 

[Lo, PM] = O(k) (67) 

This can be verified from Eqs. (22), (24), and (A. 1). The consequence is that 
PMLoQM is also O(a), so that MM is O(h2). We can then neglect the interaction 
term in the denominator  of  MM at the expense of  O(h 3) errors. Since the 
spectrum of  Lo is known, we can then calculate the memory function to 
lowest order. Defining 

MM(kZ; pp') = ~Q- z(O(pk)[ MMt D(p'k)> (68) 

we find four contributions, corresponding to the two parts of  each vertex, 
PML QM: 

MM(kZ; pp') = ~ M~(kz ;  pp') (69) 
cc,B = 1,2 

where 

- ,  6 q 
iM11 = Do2~  - 1  ~ V(k')2k '-~-~p, k "Fp  

k' 

( ~(pl)fS(p) 8(p - p') 
alp1 X 

J z + (k  - k ' ) . p / m  + k'.p~/m 

+ p02~-z ~ V(k')V(k - k')k'.~Tp(k ~) - k ).~-Tp' ? 

~(P)O(P') X 
z + (k - k) .p ' /m + k'.p/m 

#po 2 1 
iM12(kz; pp') = m~/6 f2 k2,,J dp2 q~(p2)~ba(p') 

ik'• p,p [k.(p'  - p) + k . (p  - P2)] 

[V(k') z + V(k')V(k - k ')]~(p)4,(p ') l  

iM21(kz; pp') = iM~2(kz; p!p) 

iM22(kz; p'p) = 6m f~ dp~ dp2 fS(pl)(~(p2)~ba(p)~ba(p')(o(p)O(p ') 

-[k.(p '  - P2) § k' .(p2 - Pl)] 

• [ k . ( p  - P 2 ) +  k ' . ( p 2  - p l ) ]  

V(k') 2 + V(k')V(k - k' )  
X 

z + k ' . (p l  - p2)/m + k.p2/m 

(7Oa) 

(70b) 

(70c) 

(70d) 
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The first term, M~I, is the FM memory function. The remaining terms are 
all separable and somewhat easier to deal with. To calculate ~/M(kz; pp') in 
this theory, we would use the exact W(k; pp') in Eq. (28). 

We first consider whether the approximate memory function satisfies 
the conservation laws (36). Taking k = 0, it is not hard to show that 

and 

(itM~B(Oz)lp') = O, i = 1, 2, 4, 5 (71) 

(31M22(0z ) [p )  = - (31M12(0z )  lp) 
(72) 

( 3 1 M l l ( 0 z )  lp) = - (31M21(0z) lp) 

so that the conservation laws are satisfied. 
The low-(k, z) limit of MM plays an important role in the analysis of the 

hydrodynamic regime. We let k become continuous and use the Plemelj 
prescription, finding 

lim MM(kz; pp') = - iK(pp') (73) 
k~O; z ~ i O  + 

where K is the linearized Fokker-Planck operator of Brout and Prigogine312) 
This is the same as the Markovian limit of the FM memory function. 

We now will show that properties (44a)-(44c) hold. Properties (44b) 
and (44c) are obvious. To determine whether W~j is O(k2), we consider first 
the part W[j defined in (43). As observed by FM, K is nonzero except on the 
five r Hence q K - Z q  is finite and W~j is O(k  2) because each vertex is 
O(k).  The second part, W('~, can be investigated by direct calculation. Each 
M~ B gives a first order in k contribution to (21M~B[3), but these cancel as in 
(72). All other matrix elements are second order, and we conclude that 
W~j = O(k  2) for the weak coupling memory function; the results of  Section 
4 then apply. In the FM theory, the term (21M~[3) made a contribution to 
the sound speed which was correct at second order in A, but not at third. 

5,2. T ranspor t  Coef f ic ien ts  

What remains is to calculate the coefficients a, b, c, d for this theory. 
Many of the calculations are the same as those appearing in FM, so we will 
follow a similar notation and be brief. In imitation of (41), we write 
a = a' + a", b = b' + b", etc. To obtain the primed contributions, we will 
need the fluxes, 

l im( i[MM(kZ)[p ' )  = k j T ~ j ( p ' ) ,  

l im(3 lMM(kz)[p '  ) = kJ~(p ' )  

i =  2 ,4 ,5  
(74) 
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where the limit k --+ O, z --> ic is taken. The contributions from Mn are the 
same as in the FM theory. We denote them as 

/ 

T~l(p ') = �88 + T,j(p) (75) 

2po/3 ~ dk k' 0 
J)~(P) - ~ - - ~ j  ~ - ~  . ~  V(k') (76) 

; [ ] ~(Pz)'~(P') ~V k,.p 1 �9 d p z  V(k')(pz - p')j + ~--~7/ ie + k ' . ( p '  - pz) 

E(p) : 2(2rr) -sf  dk V(k')2U~(k'p) (77) 

•j(p) : - ( 2 = ) -  3 f dk '  ~V(k')2 k ~?~kj. Ul(k'p) (78) 

f , ~ ~(p') Ul(k'p) = -mpoc~ dpz ~(p~)k "~-ff7 i ,  + k'.(p~ - p') (79) 

In addition, we have contributions from each of the other M, , .  Of these, 
however, the only term that contributes to W~'j is 

Ti~ ~ : - ~3~E(p') (80) 

It should be noted that the other difference from the FM calculation is 
that the term zE(p) is missing from the rhs of our (74). The effect of these 
two differences will be that the primed contributions to the actual transport 
coefficients are unchanged. 

Including the contribution from 5r we find 

a' : - (7331qK-  ~ql?3s) - ( I /144)(EIqK-  ~qJE) 
(80 

b ' =  0, c' = - ( j3~lqK-~q] jJ) ,  d' = -(?~31qK-~q[.7~3) 

where 

T~j(p) = -a2m- l (p~p j  - ]3~jp 2) - ]v j (82) 

j j  = [(p2p2/6m)a4 _ j~l(p)] (83) 

There are only two second-order contributions to W~"j from the new 
parts of the memory function. They are 

a~2 = X2/9 (84) 

b'~ = m,~x2/3 ~/-6 = - b~  (85) 

where 

Xs = pom c~37rI/2(2=)-3 f dk' [ W(k')2/Ik'r] (86) 
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Again, we will find that the two new terms lead to cancelling contributions 
to the transport coefficients. 

The remaining contributions are from Ma~ and also appear in the FM 
calculations. We have, finally, 

a" = - X 3 / 2 0  - 7X~/36, b" = 0 
(87) 

c" = - 2x2/9 - Xa/36, d" = - xa/60 

where 

g 
= pom~3~l/2(27r)- ~ ) dk '  k ' (~  V / a k ' )  2 (88) X3 

The predictions for the transport coefficients are, from Eqs. (58)-(61), (64), 
(81), and (87), as follows: 

Thermal conductivity : 

U'(Cv) -1 = mo0(gx2 - xa)/36, U(c~) -1 = mpo( jae[qK- lq t j3e )  (89) 

Shear viscosity: 

~" = mpoxa/60,  7' = mpo('?~3lqK-lql'Tla) (90) 

Bulk viscosity : 

~" = mpo(x3 - X2)/36, (" = m p o ( E l q K - Z q ] E ) / 1 4 4  (91) 

We have utilized FM's observation that 

( ~ a  I q K  ~ lq['T3a) = ~('Tla ] q K -  Zq[ ~ a) (92) 

These predictions are the same, to lowest order in A, as those of the FM 
theory. (There are, however, some typographical errors in the final results 
given in the FM paper.) 

6. D ISCUSSION 

We conclude that, at least to lowest order, the calculation of dissipative 
effects in a weakly coupled system is not sensitive to whether the exact 
conserved quantities are isolated in the subspace. This was also true for the 
nondissipative part of the theory, because FM did obtain the correct thermo- 
dynamics to second order in h. This conclusion is supportive of the FM 
procedure in that it shows that no errors are generated to lowest order by 
possible residual hydrodynamic resonances in the memory function W~j 
caused by the fact that the potential energy density has not been eliminated 
by q or Q. The question of whether the resulting transport coefficients are a 
good approximation (i.e., whether the FM weak coupling approximation 
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procedure is valid in the hydrodynamic regime) has not been closely examined 
here. The scheme at least has the advantage of simplicity, and the predictions 
are sensible. For our purposes it serves to demonstrate that it is not necessary 
to have approximations for the reversible and irreversible parts of the 
dynamical behavior that are consistent with each other (e.g., that are the 
same order in a parametric expansion). The theory presented here has been 
shown to be capable of including exact thermodynamic quantities while 
making the same predictions as FM in the irreversible part of the theory. 

A P P E N D I X  A 

To find the form of the inversion kernel W(k; pp'), we first note that, 
from (22) and (24), 

<D(pk)lD(p'k)> = po~(p - p') + B~j~b~(p)@(p')q6(p)(~(p') (A.I) 

where 

Bzz = s 

913 = B*I = ~ - I ~ V ~ -  @~1 w~> (A.2) 

and all the other B~j are zero. The integral equation (29) is then degenerate 
and easily solved. We find 

W(k; pp') = [8(p - p')/po(~(p)] - Du~b~(p)~b:(p' ) (A.3) 

where 

D u = p o i l u  - @03 + B)~ ~ (A.4) 

The lemma (46) is seen by inserting (A.1) into (45) and using the ortho- 
normality of the ~b~(p), which yields 

< D(pk)IJ[rn > = (plJIi)(po8~m + B ~ )  (A.5) 

The key observation is that 

(p08~ + B~m) = ~-z( i [m> 

which is true because B~j contains all terms of <i[j> involving purely spatial 
correlations. This proves (46). 
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